If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+0.25x=17
We move all terms to the left:
x^2+0.25x-(17)=0
a = 1; b = 0.25; c = -17;
Δ = b2-4ac
Δ = 0.252-4·1·(-17)
Δ = 68.0625
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0.25)-\sqrt{68.0625}}{2*1}=\frac{-0.25-\sqrt{68.0625}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0.25)+\sqrt{68.0625}}{2*1}=\frac{-0.25+\sqrt{68.0625}}{2} $
| 13-5x=8-2x | | -5w-14=-4w-5 | | 4(t+8)=56 | | x^2+1/4x=17 | | 6{x+2}=+2x+10+4x | | -0,4x+6=2,4x | | 1/5x-11=8 | | -120=-24a | | 2x-3=-x+12 | | (x/6)+(82-x)1/4=16 | | 90+8m=218 | | 17=n/20 | | 4j^2+108=0 | | m+3=-17 | | 24n-150=210 | | w-75=34 | | 6n+15=10+5n | | -10=n-6 | | M(t)=t^2=10t | | -23+4x=17 | | -4/3+m=9m | | 2(3x-4)=24-2x | | 8x+4(x-5)=-44 | | 14-x+-3=25 | | 13-p=-2 | | 6r+3=-7 | | 60v-7=0 | | 2x+19=-23 | | 3x+5x+3x=90 | | (3x/8)-(1/3)=15 | | 9x-2+5x=5x+4-7x | | 44-5=-34-10x |